
Question:

Task:

Results:

How to build a trajectory optimization program that can be
adaptive to various system models?

Our task is to use generic nonlinear programming for
trajectory planning while satisfying random-target
constraint and realizing contact-free motion.

We test our program in random-target and contact free
tasks. We also use di�erent types of models to realize
trajectory optimization. The results are shown in Figure 2-4.

Trajectory optimization means �nding the best trajectory by selecting
the inputs to the system, mostly controls. In our research, we de�ne the
optimal trajectory as the one that minimizes the square of controls.

Trajectory optimization plays a signi�cant role in robotic motion plan-
ning. A trajectory that contains collisions or violates constraints can be
optimized into a high-quality trajectory satisfying all constraints [1].

When solving trajectory optimization problems, traditional simulation
methods require the speci�c system dynamic function. Therefore, the
problem lies in that the program needs reconstructing when the
observed system varies.

BackgroundBackground

There are many di�erences in our generic trajectory planning program
from traditional ones, we summarize as follows:
 • Generic Framework: Our program is independent of any speci�c
 system, it can be adaptive to di�erent types of complex models.
 • Complex Task: Our program can satisfy random-target constraint and
 realize contact-free motion.
 • Improve Overall Performance: Aside from above, our future goal is to
 achieve e�cient large-scale trajectory optimization.

SpotlightsSpotlights

The results can be categorized into two branches: �rst is the progress in
mutiple task scenarios shown in Figure 2; and second is the progress in
model extension shown in Figure 3. Figure 4 shows the detailed state and
control information of a cart-pole example.

ResultsResults

[1] J. Schulman et al., “Finding locally optimal, collision-free trajectories with
 sequential convex optimization,” in RSS, 2013.
[2] E. Todorov, T. Erez, and Y. Tassa, “MuJoCo: a physics engine for model-based
 control,” in Proceedings of the 2012 IEEE/RSJ International Conference on
 Intelligent Robots and Systems, 2012.
[3] A. Wächter and L. T. Biegler, “On the Implementation of a Primal-Dual Interior
 Point Filter Line Search Algorithm for Large-Scale Nonlinear Programming,”
 Mathematical Programming 106(1), pp. 25-57, 2006.
[4] G. Brockman et al., “Openai gym,” arXiv:1606.01540, 2016.

ReferencesReferences

Yuanwen Tian1, Zehao Xu2, Haifeng Wang3, Prof. Tao Gao4
1 Huazhong University of Science and Technology
2 Zhejiang University
3 Tsinghua University
4 Center for Vision, Cognition, Learning and Autonomy, University of California, Los Angeles

Model-Based Trajectory Planning through
Generic Nonlinear Programming

SummarySummary

HUAZHONG UNIVERSITY
OF SCIENCE & TECHNOLOGY

University of California,
Los Angeles

This research is collaborated by Yuanwen Tian, Zehao Xu, and Haifeng
Wang. We would like to show our gratitude to our mentor, Prof. Tao Gao,
for his insight, expertise, and patient instructions. Thanks for UCLA-CSST
for providing professional help for me to enjoy this scienti�c journey.

AcknowledgementsAcknowledgements

MethodsMethods

Figure 1. A model example from MuJoCo physics
engine. This is a humanoid model with 27 degree of
freedom. This model is used to simulate
human motion by OpenAI [4].

We use MuJoCo [2] to derive physical dynamic of the system, then we
input the parameters to Ipopt [3] to obtain the optimal trajectory.

(a) cart position (b) cart velocity (c) control

Figure 4. Trajectory data visualization of the cart-pole example.

(d) pole position (e)pole velocity

(a) (c)(b)
(a) inverted pendulum(one rotational joint);
(b) double inverted pendulum(two rotational joint);
(c) cart-pole(one translational joint and one rotational joint).

Figure 3. Di�erent models can achieve optimal trajectory.

Figure 2. Trajectory optimization of a ball moving in a plane.
 (light green sphere is the target and red cylinder is the obstacle.)

(a) a random-target task (b) a contact-free task

-> ->

Work�ow:

trajectory optimization
problem

MuJoCo
dynamics

Ipopt
solver

